Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
نویسندگان
چکیده
The structure and stability of repeat proteins has been little studied in comparison to the properties of the more familiar globular proteins. Here, the structure and stability of designed tetratricopeptide-repeat (TPR) proteins is described. The TPR is a 34-amino-acid motif which adopts a helix-turn-helix structure and occurs as tandem repeats. The design of a consensus TPR motif (CTPR) has previously been described. Here, the crystal structures and stabilities of proteins that contain eight or 20 identical tandem repeats of the CTPR motif (CTPR8 and CTPR20) are presented. Both CTPR8 and CTPR20 adopt a superhelical overall structure. The structures of the different-length CTPR proteins are compared with each other and with the structures of natural TPR domains. Also, the unusual and perhaps unique crystal-packing interactions resulting in pseudo-infinite crystalline superhelices observed in the different crystal forms of CTPR8 and CTPR20 are discussed. Finally, it is shown that the thermodynamic behavior of CTPR8 and CTPR20 can be predicted from the behavior of other TPRs in this series using an Ising model-based analysis. The designed protein series CTPR2-CTPR20 covers the natural size repertoire of TPR domains and as such is an excellent model system for natural TPR proteins.
منابع مشابه
Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand.
Tetratricopeptide repeats (TPRs) are protein domains that mediate key protein-protein interactions in cells. Several TPR domains bind the C-termini of the chaperones heat shock protein (Hsp)90 and/or Hsp70, and exchange of such binding partners is key for the heat shock response. We have previously described the design of a TPR protein that binds tightly and specifically to the C-terminus of Hs...
متن کاملLocal and long-range stability in tandemly arrayed tetratricopeptide repeats.
The tetratricopeptide repeat (TPR) is a 34-aa alpha-helical motif that occurs in tandem arrays in a variety of different proteins. In natural proteins, the number of TPR motifs ranges from 3 to 16 or more. These arrays function as molecular scaffolds and frequently mediate protein-protein interactions. We have shown that correctly folded TPR domain proteins, exhibiting the typical helix-turn-he...
متن کاملSelf-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize t...
متن کاملComparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain.
The tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif that occurs in tandem arrays in numerous proteins. Here we compare the backbone dynamics of a natural 3-repeat TPR domain, from the protein UBP, with the behavior of a designed protein CTPR3, which consists of three identical consensus TPR units. Although the three tandem TPR repeats in both CTPR3 and UBP behave as a s...
متن کاملDesign of Stable -Helical Arrays from an Idealized TPR Motif
a parallel array, to produce an extended molecule with an overall superhelical architecture. This can be visualized as a spiral staircase in which the individual TPR and Biochemistry motifs are the steps. Precisely how the TPR fold may mediate protein-pro-2 Howard Hughes Medical Institute 3 Department of Chemistry tein interactions was first revealed by the crystal structures of the two differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 63 Pt 7 شماره
صفحات -
تاریخ انتشار 2007